Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin.

نویسندگان

  • Claudio Acuna-Goycolea
  • Anthony N van den Pol
چکیده

Hypocretin/orexin, produced by a group of neurons in the lateral hypothalamus/perifornical area, enhances cognitive arousal and also may play a crucial role in modulating the neuroendocrine system. How hypocretin modulates the endocrine system remains an open question. Hypocretin cells innervate the mediobasal hypothalamus where they can potentially influence the activity of specific cell populations within the arcuate nucleus. Here, we examine whether hypocretin modulates the median eminence-projecting proopiomelanocortin (POMC) neurons identified by selective green fluorescent protein expression and antidromic stimulation or retrograde Evans blue dye tracing in transgenic mice. We find that POMC neurons, in general, and, in addition, those that project their axons to the median eminence, were robustly activated by hypocretin in a dose-dependent manner. These excitatory actions included a threefold increase in spike frequency and direct membrane depolarization of up to 22 mV (mean, 17.9+/-7.2 mV). Direct postsynaptic depolarization was decreased at more positive membrane potentials, inhibited by the sodium-calcium exchanger antagonist KB-R7943, and reduced by lowering the bath temperature, or by buffering the postsynaptic calcium with BAPTA, suggesting that the primary mechanism for hypocretin-mediated excitation is the activation of the sodium-calcium exchanger. Hypocretin also enhanced excitatory inputs to POMC cells via a presynaptic mechanism and indirectly increased the release of GABA onto these cells in a spike-dependent manner. However, these synaptic actions were not necessary to cause postsynaptic membrane depolarization and spiking. Thus, in contrast to previous suggestions that hypocretin inhibited POMC cells, our results demonstrate robust direct excitation of POMC neurons by hypocretin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of hypocretin-1,2 (orexin A and B) in pain perception

Hypocretins/orexins are primary excitatory neuropeptides located exclusively in neurons of the lateral hypothalamic area, which send projections to most monoaminergic nuclei. It has been reported that i.c.v. injection of hypocretin 1 (orexin A) enhances wakefulness in rats and mice. The present work was carried out to examine the roles of hypocretins in nociception in mice. The presence of robu...

متن کامل

Multiple hypothalamic circuits sense and regulate glucose levels.

The hypothalamus monitors body energy status in part through specialized glucose sensing neurons that comprise both glucose-excited and glucose-inhibited cells. Here we discuss recent work on the elucidation of neurochemical identities and physiological significance of these hypothalamic cells, including caveats resulting from the currently imprecise functional and molecular definitions of gluc...

متن کامل

Role of hypocretin-1,2 (orexin A and B) in pain perception

Hypocretins/orexins are primary excitatory neuropeptides located exclusively in neurons of the lateral hypothalamic area, which send projections to most monoaminergic nuclei. It has been reported that i.c.v. injection of hypocretin 1 (orexin A) enhances wakefulness in rats and mice. The present work was carried out to examine the roles of hypocretins in nociception in mice. The presence of robu...

متن کامل

Hypocretin/Orexin Peptides Excite Rat Neuroendocrine Dopamine Neurons through Orexin 2 Receptor-Mediated Activation of a Mixed Cation Current

Hypocretin/Orexin (H/O) neurons of the lateral hypothalamus are compelling modulator candidates for the chronobiology of neuroendocrine output and, as a consequence, hormone release from the anterior pituitary. Here we investigate the effects of H/O peptides upon tuberoinfundibular dopamine (TIDA) neurons - cells which control, via inhibition, the pituitary secretion of prolactin. In whole cell...

متن کامل

Nicotine excites hypothalamic arcuate anorexigenic proopiomelanocortin neurons and orexigenic neuropeptide Y neurons: similarities and differences.

Two of the biggest health problems facing us today are addiction to nicotine and the increased prevalence of obesity. Interestingly, nicotine attenuates obesity, but the underlying mechanism is not clear. Here we address the hypothesis that if weight-reducing actions of nicotine are mediated by anorexigenic proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus, nicotine should ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2009